Carbon chains and the (5,5) single-walled nanotube: structure and energetics versus length.
نویسندگان
چکیده
Reliable thermochemistry is computed for infinite stretches of pure-carbon materials including acetylenic and cumulenic carbon chains, graphene sheet, and single-walled carbon nanotubes (SWCNTs) by connection to the properties of finite size molecules that grow into the infinitely long systems. Using ab initio G3 theory, the infinite cumulenic chain (:C[double bond]C[double bond]C[double bond]C:) is found to be 1.9+/-0.4 kcal/mol per carbon less stable in free energy at room temperature than the acetylenic chain (.C[triple bond]C-C[triple bond]C.) which is 24.0 kcal/mol less stable than graphite. The difference between carbon-carbon triple, double, and single bond lengths (1.257, 1.279, and 1.333 A, respectively) in infinite chains is evident but much less than with small hydrocarbon molecules. These results are used to evaluate the efficacy of similar calculations with the less rigorous PM3 semiempirical method on the (5,5) SWCNT, which is too large to be studied with high-level ab initio methods. The equilibrium electronic energy change for C(g)-->C[infinite (5,5) SWCNT] is -166.7 kcal/mol, while the corresponding free energy change at room temperature is -153.3 kcal/mol (6.7 kcal/mol less stable than graphite). A threefold alternation (6.866, 6.866, and 6.823 A) in the ring diameter of the equilibrium structure of infinitely long (5,5) SWCNT is apparent, although the stability of this structure over the constant diameter structure is small compared to the zero point energy of the nanotube. In general, different (n,m) SWCNTs have different infinite tube energetics, as well as very different energetic trends that vary significantly with length, diameter, and capping.
منابع مشابه
Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study
Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...
متن کاملTheoretical Calculations of the Effect of Finite Length on the Structural Properties of Pristine and Nitrogen-doped Carbon Nanotubes
The effect of impurities on quantum chemical parameters of single-walled nanotubes (SWNTs) was studied using density functional theory (DFT). The density of states (DOS), Fermi energy and thermodynamic energies of (5,5) carbon nanotubes were calculated in the presence of nitrogen impurity. It was found that this nanotube remains metallic after being doped with one nitrogen atom. The partial den...
متن کاملAb Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...
متن کاملSynthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite
In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...
متن کاملSynthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite
In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 19 شماره
صفحات -
تاریخ انتشار 2006